Epsilon Substitution for Predicate Logic

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grigori Mints Thoralf Skolem and the Epsilon Substitution Method for Predicate Logic *

Skolem’s contributions to mathematical logic are fundamental and far-reaching. A good survey by Hao Wang (1970) is presented in Fenstad’s collection of Skolem’s works (1970). Even Skolemization, i.e. the replacement of quantifiers by new constant and function symbols, is too extensive for one talk. Cf. my survey (Mints 1990) of proof-theoretic aspects and more recent work (Shankar 1992) concern...

متن کامل

Nominal Semantics for Predicate Logic: Algebras, Substitution, Quantifiers, and Limits

We define a model of predicate logic in which every term and predicate, open or closed, has an absolute denotation independently of a valuation of the variables. For each variable a, the domain of the model contains an element JaK which is the denotation of the term a (which is also a variable symbol). Similarly, the algebra interpreting predicates in the model directly interprets open predicat...

متن کامل

Epsilon Substitution for ID1

Hilbert’s epsilon substitution method provides a technique for showing that a theory is consistent by producing progressively more accurate computable approximations to the non-computable components of a proof. If it can be shown that this process eventually halts with a sufficiently good approximation, the theory is consistent. Here we produce a new formulation of the method for the theory ID1...

متن کامل

Epsilon substitution for transfinite induction

We apply Mints’ technique for proving the termination of the epsilon substitution method via cut-elimination to the system of Peano Arithmetic with Transfinite Induction given by Arai.

متن کامل

Resolution for Predicate Logic

A substitution is a function θ from the set of σ-terms back to itself such that (writing function application on the right) cθ = c for each constant symbol c and f(t1, . . . , tk)θ = f(t1θ, . . . , tkθ) for each k-ary function symbol f . It is clear that the composition of two such substitutions (as functions) is also a substitution. We have previously considered substitutions of the form [t/x]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science

سال: 2011

ISSN: 2075-2180

DOI: 10.4204/eptcs.47.2